What are photons?

(By Paul Sutter, Nederlandse machinevertaling onder, Source: https://www.livescience.com/what-are-photons

Photons carry the electromagnetic force, and act as both particles and waves.

Photons are fundamental subatomic particles that carry the electromagnetic force — or, in simpler terms, they are light particles (and so much more). The photon is also the “quantum,” or fundamental unit, of electromagnetic radiation. Everyone is surrounded by photons: The light coming from the screen you’re viewing is composed of photons, the X-rays doctor use to see bones are made of photons, the radio in a car receives its signal from photons, and the magnets on a fridge use photons to hold themselves up.

Like all other subatomic particles, photons exhibit wave-particle duality, meaning that sometimes they behave as tiny particles and sometimes they act as waves. Photons are massless, allowing them to travel at the speed of light in a vacuum (299,792,458 meters per second) and can travel an infinite distance.


Although physicists have studied the nature of light for centuries, arguments went back and forth as to whether light was made of tiny particles or was wave-like in nature. In the late 1800s, however, the pioneering work of German physicist Max Planck changed the entire picture.

Planck was studying something called blackbody radiation, or light from a special device that emitted light at all frequencies as efficiently as possible. Until Planck, nobody could explain the spectrum of light coming from these devices, so Planck added a “fix” to the equations. By assuming that light could be emitted only in discrete chunks of energy, known as quanta, he was able to develop a formula that perfectly explained the blackbody spectra, according to HyperPhysics.

Physicists weren’t exactly sure what to make of Planck’s result, but several years later, Albert Einstein took it one step further. To explain the photoelectric effect, which is the release of electrons from a metal when light shines on it, Einstein proposed that light itself is composed of discrete little chunks, according to the American Physical Society. Over time, those little chunks became known as photons.

The work of Planck, Einstein and others to study the nature of light kick-started the development of quantum mechanics.

The photoelectric effect — emission of electrons when photons hit a metal surface. (Image credit: petrroudny via Getty Images)


Strictly speaking, photons are neither particles nor waves; they are a combination of both. In some situations, their particle-like nature comes out more, and in others, their wave-like nature is more apparent.

For example, a detector can register the arrival of a single photon, which appears as a point-like particle. The process known as Compton scattering involves a photon striking an electron, and in that situation, the photon acts as a particle.

However, it’s impossible to predict exactly where or when a photon will strike a detector. In quantum mechanics, one can only assign probabilities to events. Those events are modeled by equations for waves, with peaks in the waves corresponding to regions of high probability of receiving a photon and troughs corresponding to regions of low probability, according to AccessScience by McGraw Hill.

This concept is best exemplified by the famous double-slit experiment, which solidified the dual wave-particle nature of light (and, eventually, other subatomic particles). When light passes through a screen with two slits cut into it, it forms an interference pattern on the detector on the other side of the screen, where the peaks of waves line up with each other in some places, and where the peaks and troughs cancel each other out in others. Even though only one photon passes through the screen at a time — with each individual photon acting like a particle — the interference pattern that emerges on the detector is the exact same pattern that would occur if waves were passing through the slits instead.

The double-slit experiment shows that light acts like both a particle and a wave. (Image credit: grayjay via Shutterstock)


Photons have zero mass, which allows them to travel at the fastest possible speed in the universe, the speed of light. However, they do have energy and momentum. The energy of a photon is given by Planck’s constant times the frequency of the light, and the momentum of a photon is given by Planck’s constant times the frequency of the light times the speed of light, according to the University of Calgary’s Energy Education website.

The fact that photons have momentum enables a broad array of applications. For example, solar sails are experimental propulsion devices that use sunlight to push a spacecraft. According to NASA, the photons from the sun bounce off of the reflecting sail, thus imparting their momentum on the sail and moving the spacecraft.


Our understanding of the rate of the passage of time comes from Einstein’s theory of special relativity, which states that objects traveling closer and closer to the speed of light will experience slower and slower rates of the passage of time. In other words, moving clocks run slowly, according to John D. Horton of the University of Pittsburgh.

However, the mathematics of special relativity apply only to objects traveling more slowly than the speed of light and don’t apply directly to photons, which do travel at the speed of light. Thus, it’s impossible to say what a photon “experiences” in terms of the flow of time, because scientists have no mathematical language to support it. Another way to put this is that the concept of the flow of time is meaningless to photons.


Because photons have both energy and momentum, they are influenced by gravity. Under Einstein’s theory of general relativity, which is our modern understanding of gravity, anything with any form of energy (including mass, momentum and torsion) is influenced by gravity. Specifically, massless particles, such as photons, follow “geodesics,” which are paths of minimum distance from one point to another, according to EarthSky.

In general relativity, space-time is curved due to the influence of massive objects. This can make the “minimum distance” path a curved line, just as jets have to follow a curved path to go straight from one city to another, because Earth itself is curved.

The curvature of space-time affects photons in several ways. When photons are moving from a region of strong gravity to a region of weaker gravity, they will lose energy, which lowers their frequencies to the redder end of the spectrum. When photons pass near massive objects, their direction of motion will change.


  • You can dig deeper into the relationship between light and time in this YouTube video hosted by the author of this article, astrophysicist Paul M. Sutter.
  • For a fun exploration of the nature of quantum mechanics (which, of course, also discusses photons), check out “How to Teach Quantum Physics to Your Dog” (Scribner, 2010) by physicist Chad Orzel.
  • The Physics Asylum also hosts a great video explainer on the nature of the photon, which you can watch here.

================================== =======================================

Wat zijn fotonen?

(Door Paul Sutter)  Bron: https://www.livescience.com/what-are-photons

Fotonen dragen de elektromagnetische kracht en werken zowel als deeltjes als golven..

Abstract representation of photons. (Image credit: Dizzo via Getty Images)

Abstract representation of photons. (Image credit: Dizzo via Getty Images)

Fotonen zijn fundamentele subatomaire deeltjes die de elektromagnetische kracht dragen – of, in eenvoudiger bewoordingen, het zijn lichte deeltjes (en nog veel meer). Het foton is ook het ‘kwantum’ of fundamentele eenheid van elektromagnetische straling. Iedereen is omringd door fotonen: het licht dat van het scherm dat u bekijkt, is samengesteld uit fotonen, de röntgenfoto’s die artsen gebruiken om botten te zien, zijn gemaakt van fotonen, de radio in een auto ontvangt zijn signaal van fotonen en de magneten op een koelkast gebruikt fotonen om zichzelf overeind te houden.

Net als alle andere subatomaire deeltjes vertonen fotonen een dualiteit van golven en deeltjes, wat betekent dat ze zich soms gedragen als kleine deeltjes en soms als golven. Fotonen zijn massaloos, waardoor ze met de snelheid van het licht in een vacuüm (299.792.458 meter per seconde) kunnen reizen en een oneindige afstand kunnen afleggen.


Hoewel natuurkundigen de aard van licht eeuwenlang hebben bestudeerd, gingen de argumenten heen en weer over de vraag of licht uit kleine deeltjes bestond of golfachtig van aard was. Aan het eind van de 19e eeuw veranderde het pionierswerk van de Duitse natuurkundige Max Planck echter het hele plaatje.

Planck bestudeerde iets dat blackbody-straling wordt genoemd, of licht van een speciaal apparaat dat zo efficiënt mogelijk licht op alle frequenties uitstraalt. Tot Planck kon niemand het lichtspectrum van deze apparaten verklaren, dus Planck voegde een “fix” toe aan de vergelijkingen. Door aan te nemen dat licht alleen kan worden uitgestraald in discrete brokken energie, ook wel quanta genoemd, kon hij een formule ontwikkelen die de spectra van het zwarte lichaam perfect verklaarde, aldus HyperPhysics.

Natuurkundigen wisten niet precies wat ze van Plancks resultaat moesten denken, maar enkele jaren later ging Albert Einstein nog een stap verder. Om het foto-elektrisch effect te verklaren, dat wil zeggen het vrijkomen van elektronen uit een metaal wanneer er licht op schijnt, stelde Einstein voor dat licht zelf is samengesteld uit discrete kleine brokken, volgens de American Physical Society. Na verloop van tijd werden die kleine brokken bekend als fotonen.

Het werk van Planck, Einstein en anderen om de aard van licht te bestuderen, was de start van de ontwikkeling van de kwantummechanica.

The photoelectric effect — emission of electrons when photons hit a metal surface. (Image credit: petrroudny via Getty Images)


Strikt genomen zijn fotonen geen deeltjes of golven; ze zijn een combinatie van beide. In sommige situaties komt hun deeltjesachtige aard meer naar voren, en in andere is hun golfachtige aard duidelijker.

Een detector kan bijvoorbeeld de aankomst van een enkel foton registreren, dat verschijnt als een puntachtig deeltje. Het proces dat bekend staat als Compton-verstrooiing omvat een foton dat een elektron raakt, en in die situatie fungeert het foton als een deeltje.

Het is echter onmogelijk om precies te voorspellen waar of wanneer een foton een detector zal raken. In de kwantummechanica kan men alleen kansen toewijzen aan gebeurtenissen. Die gebeurtenissen worden gemodelleerd door vergelijkingen voor golven, met pieken in de golven die overeenkomen met regio’s met een hoge kans om een ​​foton te ontvangen en dalen die overeenkomen met regio’s met een lage waarschijnlijkheid, volgens AccessScience door McGraw Hill.

Dit concept wordt het best geïllustreerd door het beroemde dubbelspletenexperiment, dat de dubbele golf-deeltjesaard van licht (en, uiteindelijk, andere subatomaire deeltjes) stolde. Wanneer licht door een scherm met twee spleten erin gaat, vormt het een interferentiepatroon op de detector aan de andere kant van het scherm, waar de pieken van golven op sommige plaatsen met elkaar in lijn liggen, en waar de pieken en dalen elkaar opheffen elkaar uit in anderen. Hoewel er maar één foton tegelijk door het scherm gaat – waarbij elk afzonderlijk foton zich als een deeltje gedraagt ​​- is het interferentiepatroon dat op de detector naar voren komt precies hetzelfde patroon dat zou optreden als in plaats daarvan golven door de spleten zouden gaan.

The double-slit experiment shows that light acts like both a particle and a wave. (Image credit: grayjay via Shutterstock)


Fotonen hebben massa nul, waardoor ze met de hoogst mogelijke snelheid in het universum kunnen reizen, de snelheid van het licht. Ze hebben echter wel energie en momentum. De energie van een foton wordt gegeven door Planck’s constante maal de frequentie van het licht, en het momentum van een foton wordt gegeven door Planck’s constante maal de frequentie van het licht maal de lichtsnelheid, volgens de Energy Education-website van de University of Calgary.

Het feit dat fotonen momentum hebben, maakt een breed scala aan toepassingen mogelijk. Zonnezeilen zijn bijvoorbeeld experimentele voortstuwingsapparaten die zonlicht gebruiken om een ​​ruimtevaartuig voort te duwen. Volgens NASA kaatsen de fotonen van de zon af van het reflecterende zeil, waardoor ze hun momentum op het zeil geven en het ruimtevaartuig bewegen.


Ons begrip van de snelheid van het verstrijken van de tijd komt van de speciale relativiteitstheorie van Einstein, die stelt dat objecten die steeds dichter bij de snelheid van het licht komen, steeds langzamere snelheden van het verstrijken van de tijd zullen ervaren. Met andere woorden, bewegende klokken lopen langzaam, volgens John D. Horton van de Universiteit van Pittsburgh.

De wiskunde van de speciale relativiteitstheorie is echter alleen van toepassing op objecten die langzamer reizen dan de lichtsnelheid en niet rechtstreeks op fotonen, die wel met de lichtsnelheid reizen. Het is dus onmogelijk om te zeggen wat een foton “beleeft” in termen van tijdsstroom, omdat wetenschappers geen wiskundige taal hebben om dit te ondersteunen. Een andere manier om dit te zeggen is dat het concept van de stroom van tijd betekenisloos is voor fotonen.


Omdat fotonen zowel energie als momentum hebben, worden ze beïnvloed door de zwaartekracht. Volgens de algemene relativiteitstheorie van Einstein, wat ons moderne begrip van zwaartekracht is, wordt alles met enige vorm van energie (inclusief massa, momentum en torsie) beïnvloed door zwaartekracht. Specifiek volgen massaloze deeltjes, zoals fotonen, “geodeten”, dit zijn paden met een minimale afstand van het ene punt naar het andere, volgens EarthSky.

In de algemene relativiteitstheorie is de ruimte-tijd gekromd door de invloed van massieve objecten. Hierdoor kan het pad van de “minimale afstand” een gebogen lijn worden, net zoals jets een gebogen pad moeten volgen om rechtstreeks van de ene stad naar de andere te gaan, omdat de aarde zelf gekromd is.

De kromming van ruimte-tijd beïnvloedt fotonen op verschillende manieren. Wanneer fotonen van een gebied met sterke zwaartekracht naar een gebied met zwakkere zwaartekracht gaan, verliezen ze energie, waardoor hun frequenties naar het rodere uiteinde van het spectrum worden verlaagd. Wanneer fotonen in de buurt van massieve objecten passeren, verandert hun bewegingsrichting.


• Je kunt dieper ingaan op de relatie tussen licht en tijd in deze YouTube-video, gehost door de auteur van dit artikel, astrofysicus Paul M. Sutter.

• Voor een leuke verkenning van de aard van de kwantummechanica (waarin natuurlijk ook fotonen worden besproken), ga je naar “How to Teach Quantum Physics to Your Dog” (Scribner, 2010) van natuurkundige Chad Orzel.

• The Physics Asylum heeft ook een geweldige video-uitleg over de aard van het foton, die je hier kunt bekijken. (links in het originele Engelstalige artikel boven)

Waarom kwantummechanica nog steeds fysici verbluft (deel 2)

Vele werelden, één kat

( Zie deel 1 https://brongenoten.nl/2022/02/waarom-kwantummechanica-nog-steeds-fysici-verbluft-deel-1/) Sommige pogingen om die vraag te beantwoorden, hebben in ieder geval alleen maar een extra dosis gekheid toegevoegd aan het kwantumbrouwsel. Misschien wel de vreemdste van alle interpretaties is die welke voor het eerst werd voorgesteld in 1957 door de natuurkundige Hugh Everett van Princeton. In zijn proefschrift betoogde Everett dat de vergelijkingen (formules) van de kwantummechanica helemaal “zo als ze zijn” moeten worden genomen: kwantumgolven zijn reëel, waarbij elke mogelijke golf in feite een afzonderlijke, onafhankelijke realiteit vertegenwoordigt. Volgens de Many Worlds-theorie, zoals het idee van Everett nu bekend is, vindt elke mogelijke fysieke gebeurtenis daadwerkelijk plaats – in zijn eigen parallelle universum. De implicaties zijn onthutsend. Op dit moment, bijvoorbeeld, lezen ontelbaar veel van jullie dit, mogelijk hun hoofd krabbend.

Ondanks al zijn universum-verwekkende vreemdheid, heeft de Many Worlds-visie veel voorstanders. “In zekere zin is het erg conservatief”, zegt David Wallace, natuurkundefilosoof aan de University of Southern California. “Het laat de fysica ongewijzigd, en het houdt vast aan het idee dat wetenschappelijke theorieën ons een beschrijving moeten geven van wat er aan de hand is, zelfs als wat er aan de hand is veel vreemder is dan wat we dachten.”

Maar natuurlijk is er geen consensus. Veel natuurkundigen geven de voorkeur aan het idee dat kwantumgolven – of beter gezegd, hun wiskundige representaties, golffuncties – niet overeenkomen met werkelijke fysieke entiteiten; de golffunctie spiegelt eenvoudigweg de kans weer dat een bepaald experimenteel resultaat zal optreden. Dit elimineert de paradoxen van de kwantummechanica zonder de noodzaak om ontelbare universums op te roepen. Voorbeeld: de ongelukkige kat van Erwin Schrödinger.

Schrödinger, een tijdgenoot van Bohr en Einstein, en een van de grondleggers van de kwantummechanica, bedacht zijn beroemde gedachte-experiment om te benadrukken wat hij als “de absurditeit” van Bohrs ideeën zag. Zijn Rube Goldbergiaanse experiment bestaat uit zes componenten: een stalen doos, een kat, een radioactief element, een geigerteller, een hamer en een flesje cyanide. De kat wordt in de stalen kist gedaan; het deksel is gesloten. Niemand kan zien wat er binnen gebeurt. Gedurende een bepaald tijdsinterval kan het radioactieve element al dan niet een hoogenergetisch deeltje uitzenden. Als dat zo is, detecteert de geigerteller het en activeert de hamer om de flacon kapot te slaan, waardoor giftige dampen vrijkomen die de kat doden. Als dat niet het geval is, overleeft de kat.

Volgens de regels van de kwantummechanica bestaat het radioactieve deeltje als een golffunctie in al zijn mogelijke toestanden – zowel uitgezonden als niet uitgezonden. Een enkele, bepaalde toestand kristalliseert pas bij meting. Wat betekent dat voor de kat? Is het zowel levend als dood totdat iemand de doos opent om te kijken? Schrödinger maakte het idee belachelijk dat een kat – of wat dan ook – in twee verschillende toestanden tegelijk bestaat.

Voor sommige natuurkundigen laat het gedachte-experiment van Schrödinger zien dat de golffunctie niet reëel kan zijn, dat het niets meer is dan de waarschijnlijkheden van verschillende gebeurtenissen. De kat is levend of dood, niet levend en dood. De toestand van de kat wordt bepaald voordat iemand de doos opent. Het enige dat verandert als de doos opengaat, is onze kennis van het lot van de kat.

Kaarten tegen de werkelijkheid

In onze dagelijkse wereld lijken de wetten van de kwantumtheorie tot absurde resultaten te leiden. Maar hoe zit het met dat tweespleten-experiment? Als de golffunctie niet echt is, wat creëert dan die lichte en donkere banden?

Vier jaar geleden publiceerden Matthew Pusey van het Perimeter Institute in Waterloo, Ontario, Jonathan Barrett, toen aan de Universiteit van Londen, en Terry Rudolph van het Imperial College London een artikel in Nature Physics waarin ze overtuigend betoogden dat kwantumgolven echt moeten zijn. In een interview met Nature zei Clemson-natuurkundige Valentini: “Ik hou er niet van om hyper(bolisch) te klinken, maar ik denk dat het woord ‘seismisch’ waarschijnlijk van toepassing is op dit artikel.”

De stelling van Pusey, Barrett en Rudolph, bekend als PBR, gebruikt een geavanceerd wiskundig argument om aan te tonen dat elke interpretatie van de kwantummechanica die de golffunctie niet als een echt object behandelt, steevast leidt tot resultaten die in tegenspraak zijn met de kwantumtheorie zelf. Als ze gelijk hebben en de golffunctie reëel is, kunnen interpretaties zoals Everett’s Many Worlds, die de realiteit van de golffunctie als een gegeven beschouwen, aannemelijker gaan lijken. In dat geval zou de kat van Schrödinger levend zijn in het ene universum en dood in het andere. Als alternatief zouden fans van Bohr’s visie kunnen beweren dat de kat bestaat als een vage kwantumgolf in de gesloten doos; de uitgeputte kat zou inderdaad in een gecombineerde levend-dood staat zijn totdat iemand ernaar kijkt.

Om de kern van het PBR-argument te begrijpen, kunt u een eenvoudig kaartspel tussen u en een dealer overwegen met twee kaartspellen. Het ene kaartspel bevat alleen rode kaarten, het andere kaartspel alleen azen. De dealer geeft je een kaart en vraagt ​​uit welk kaartspel deze komt. In de meeste gevallen zal het antwoord eenvoudig zijn. Maar voor twee kaarten – de twee rode azen – is er geen manier om het te weten. De azen kunnen van beide decks komen. Dat is prima met een pak kaarten, maar de kwantumversie speelt niet zo makkelijk.

(Credit: Richard Kail/Getty Images)

Als de golffunctie geen echt fysiek object is en in plaats daarvan alleen experimentele kansen meet, dan zou meer dan één golffunctie een enkele fysieke toestand kunnen beschrijven, laten we zeggen de positie van een foton (net zoals die rode aas van beide stapels kan komen). Het idee dat een hele reeks verschillende golffuncties dezelfde onderliggende realiteit zouden kunnen beschrijven, valt uiteen in de kwantummechanica, zegt Pusey. De realiteit kan niet uit twee decks komen. Hij en zijn collega’s lieten zien dat de probabilistische of kans-interpretatie problematisch wordt.

“Het leidt tot zoveel mogelijkheden dat je kunt bewijzen dat de kwantummechanica het niet zou toestaan”, zegt Pusey. “Het zou niet logisch zijn als één fysieke toestand compatibel zou zijn met zoveel verschillende golffuncties. De voorspellingen die die golffuncties doen zijn zo verschillend.” De stelling van PBR laat zien dat kwantumtoestanden daarom uniek moeten corresponderen met iets dat echt is – dat wil zeggen, het bewijst dat de golffunctie echt bestaat en niet alleen een abstracte maatstaf voor waarschijnlijkheid is.

Ondanks enkele lovende recensies, heeft het PBR-resultaat niet veel gedachten veranderd. “Ik was een beetje teleurgesteld dat de mensen die het leuk vonden, de mensen waren die de conclusie al geloofden”, zegt Pusey. De nee-zeggers ontkennen in plaats daarvan een van de belangrijkste veronderstellingen van PBR: dat er een objectieve realiteit bestaat die we in de eerste plaats kunnen meten.

Een kneedbaar universum

Het idee van een volledig objectieve realiteit is het basisprincipe van de wetenschap, wat de belangrijkste reden is waarom Einstein zo ongemakkelijk was met Bohrs “niets bestaat zonder observatie” kijk op de kwantumtheorie. Maar Christopher Fuchs, een natuurkundige nu aan de Universiteit van Massachusetts, en Ruediger Schack van de Royal Holloway University of London zijn het daar niet mee eens. Ze beweren dat Bohr iets op het spoor was: ons idee van een objectieve realiteit moet worden gewijzigd. De fysieke wereld kan niet worden gescheiden van onze eigen pogingen om haar te onderzoeken. Hoe kan het ook anders, aangezien we zelf zijn ingebed in de wereld die we proberen te begrijpen?

Ze noemen hun manier van kijken naar de kwantummechanica QBism, een aangepaste versie van een theorie die ze ontwikkelden met de natuurkundige Carlton Caves van de University of New Mexico, genaamd Quantum Bayesianism. QBism combineert kwantummechanica met Bayesiaanse waarschijnlijkheid, een variatie op standaardwaarschijnlijkheid waarin de kansen op een bepaalde gebeurtenis worden herzien naarmate men meer kennis verkrijgt van de vele mogelijke omstandigheden die aan de gebeurtenis zijn gekoppeld. Als een patiënt bijvoorbeeld klaagt over hoofdpijn bij een arts, kan de eerste kans op een diagnose van hersenkanker laag zijn. Terwijl de arts de patiënt onderzoekt, kan de kans op een diagnose van kanker stijgen of dalen.

QBism past soortgelijke redeneringen toe op natuurkundige experimenten: wanneer natuurkundigen een experiment uitvoeren, werken ze hun eigen subjectieve kennis bij. Er is geen vaste onderliggende realiteit die verschillende waarnemers onafhankelijk van elkaar kunnen ervaren. Net zoals een arts elke patiënt afzonderlijk moet beoordelen, zo moet ook een natuurkundige de nieuwe, steeds veranderende verschijnselen benaderen die door de kwantumwereld worden gepresenteerd. In QBism kan de experimentator niet worden gescheiden van het experiment – beide zijn ondergedompeld in hetzelfde levende, onvoorspelbare moment.

“Als QBism iets radicaal en belangrijks zegt over de aard van de werkelijkheid, dan is het wel de participatie van waarnemers”, zegt Schack. “Observanten zijn belangrijk. En de werkelijkheid, als QBism gelijk heeft, kan niet worden bedacht zonder altijd observant erbij te betrekken. Dat is zeker een gewaagde uitspraak over de echte wereld, over de realiteit. Het is gewoon een kenmerk van de realiteit dat heel fundamenteel is.”

De kwantumtheorie, zegt Schack, biedt diepgaande observaties over de echte wereld, maar de theorie zelf is geen beschrijving van de wereld. Hij stelt dat de juiste manier om over kwantummechanica te denken, is als een reeks regels over hoe experimenten correct kunnen worden uitgevoerd.

“Of je een golf of deeltje ziet, hangt af van welke vraag je stelt”, zegt Schack. “Wat doen natuurkundigen? Ze kiezen experimenten. Je zou elk experiment kunnen omschrijven als een gok op de uitkomst. Kwantummechanica is een nuttige gids voor actie: het vertelt je hoe je je experimentele apparaat moet samenstellen zodat het uiteindelijk werkt.”

Schack zegt dat hij en Fuchs graag een term gebruiken die ze hebben geleend van de Amerikaanse filosoof William James, die de werkelijkheid als ‘kneedbaar’ beschouwde. QBism, zegt Schack, maakt hetzelfde punt. In wat voor soort universum leven we? Is het als een gigantische machine, waarbij de toekomst evolueert vanuit het verleden volgens onveranderlijke wetten? Of is het inherent interactief? “Waarom zou je een uurwerkuniversum willen?” vraagt hij. “QBism geeft een veel rijker universum. Het is een realiteit waarin we er veel meer toe doen dan ooit in een uurwerkuniversum.”

Terug naar het begin

Als QBism gelijk heeft, als de golffunctie niet echt is en de kwantumtheorie ons geen directe beschrijving van de werkelijkheid geeft, laat het de meest fundamentele van alle vragen onbeantwoord: hoe ziet de kwantumwereld er dan eigenlijk uit? Waar is het van gemaakt? Deeltjes? Golven? Iets dat we ons niet kunnen voorstellen? Voor theoretisch fysicus Valentini was het antwoord er al vanaf de vroegste dagen van de kwantumtheorie.

In 1927 ontwikkelde de Franse natuurkundige Louis de Broglie, die voor het eerst voorstelde dat deeltjes zich als golven zouden kunnen gedragen, een interpretatie van de kwantummechanica genaamd pilootgolftheorie, waarbij golven en deeltjes beide even reëel zijn. Elk deeltje berijdt zijn eigen golf. De pilootgolf is een bizar iets – het bestaat in meerdere dimensies – maar het is een echt fysiek object.

Pilootgolftheorie verklaart het vreemde tweespleten-experiment: een deeltje gaat altijd door de ene of de andere spleet; tegelijkertijd gaat zijn pilootgolf door beide spleten. Maar er is geen golf-deeltjesparadox omdat het experimentele apparaat en het golfsurfende deeltje allemaal één onderling afhankelijk systeem vormen dat wordt beschreven door een pilootgolf. Door een detector aan het experiment toe te voegen of te verwijderen, verandert de pilootgolf van het systeem en het patroon op het scherm.

Bohr en andere natuurkundigen verwierpen het idee van De Broglie echter gedeeltelijk, omdat het geen enkele manier bood om de exacte paden van deeltjes te voorspellen. In de jaren vijftig deed David Bohm, een vooraanstaand Amerikaans natuurkundige, wat extra werk met het idee van De Broglie, maar voor het grootste deel kwijnde de pilootgolftheorie weg tot het begin van de jaren negentig toen het Valentini als afstudeerstudent aan de haak sloeg.

Valentini heeft zijn carrière gewijd aan het bijna eigenhandig nieuw leven inblazen van het idee van een pilootgolf. Nu hebben zijn jarenlange werk een kans – een kleine, geeft hij toe – om in het gelijk te worden gesteld. Van de vele interpretaties van de kwantumtheorie is de pilootgolftheorie uniek, omdat Valentini een manier heeft gevonden om deze experimenteel te testen. Geen enkele andere interpretatie van de kwantummechanica kan die claim maken. Vele werelden, Bohr’s interpretatie en andere zijn allemaal experimenteel niet te onderscheiden – ze reproduceren de resultaten van de standaard kwantumtheorie. Maar als Valentini gelijk heeft, hebben bepaalde effecten voorspeld in de pilootgolftheorie misschien een afdruk achtergelaten op de kosmische microgolfachtergrond, de oerstraling die is overgebleven van de oerknal die nog steeds de hele ruimte doordringt.

De temperatuur van die straling is bijna een perfect uniforme 2,725 graden Celsius boven het absolute nulpunt. Gedetailleerde waarnemingen hebben echter kleine variaties in de straling gevonden. De standaardkwantumtheorie kan bijna al deze variaties verklaren, maar in 2015 onthulden nieuwe gegevens die door het Planck-ruimtevaartuig van de European Space Agency werden vrijgegeven, bewijs van kleine anomalieën in de achtergrondstraling. En dat is precies waar Valentini naar op zoek was. Terwijl de conventionele kwantumtheorie voorspelt dat willekeurige kwantumfluctuaties in het vroege universum hemelse sporen hebben achtergelaten, voorspelt de pilootgolftheorie fluctuaties die minder willekeurig zijn, waardoor er iets andere rimpels in de kosmische microgolfachtergrondstraling achterblijven.

“Het is verleidelijk”, zegt Valentini. “We doen de analyse deels om de zaken beter te begrijpen en deels om te zien wat de data ons kan vertellen over de voorspellingen die we hebben.” Nog twee jaar aan gegevens en analyse zou de kwestie moeten oplossen.

Valentini voelt zich ook aangemoedigd door de stelling van PBR omdat die steun verleent aan een centraal principe van de pilootgolftheorie: de golffunctie is reëel. Desalniettemin realiseert hij zich dat de kans dat zijn levenswerk wordt bevestigd klein is. “Wie weet wat er gaat gebeuren?” zegt hij. “Het kan twintig jaar werk in de afvoer zijn. We weten het niet. Je hebt verschillende kampen die hard aan het pushen zijn voor hun eigen interpretatie. Maar echt, als we eerlijk zijn, als wetenschappers, als een lid van het publiek ons ​​vraagt ​​wat de betekenis is van onze meest elementaire natuurkundetheorie, denk ik dat we allemaal moeten zeggen dat we het niet weten.”


Tim Folger is een bijdragende redacteur van Discover en serieredacteur van The Best American Science and Nature Writing, een jaarlijkse bloemlezing. Hij woont in Nieuw-Mexico.

[Dit artikel verscheen oorspronkelijk in gedrukte vorm als “The War Over Reality.”]

************************************************ ******************************************

Many Worlds, One Cat

(Part one: https://brongenoten.nl/2022/02/waarom-kwantummechanica-nog-steeds-fysici-verbluft-deel-1/) Some of the attempts to answer that question have, if anything, only added an extra dose of weirdness to the quantum brew. Perhaps the strangest of all the interpretations is the one first proposed in 1957 by Princeton physicist Hugh Everett. In his doctoral thesis, Everett argued that the equations of quantum mechanics should be taken at face value: Quantum waves are real, with each possible wave in effect representing a separate, independent reality. According to the Many Worlds theory, as Everett’s idea is now known, every possible physical event actually takes place — in its own parallel universe. The implications are staggering. At this moment, for example, an uncountable number of yous are reading this, possibly scratching their heads.

For all its universe-begetting outlandishness, the Many Worlds view has many advocates. “In a certain sense, it’s very conservative,” says David Wallace, a philosopher of physics at the University of Southern California. “It leaves the physics unchanged, and it holds onto the idea that scientific theories are supposed to give us a description of what is going on, even if what’s going on is much weirder than we thought.”

But, of course, there’s no consensus. Many physicists prefer the idea that quantum waves — or more precisely, their mathematical representations, wave functions — don’t correspond to actual physical entities; the wave function simply reflects the probability that a particular experimental outcome will occur. This eliminates the paradoxes of quantum mechanics without the necessity of conjuring innumerable universes. Case in point: Erwin Schrödinger’s hapless cat.

Schrödinger, a contemporary of Bohr and Einstein, and one of the founders of quantum mechanics, devised his famous thought experiment to highlight what he saw as the absurdity of Bohr’s ideas. His Rube Goldbergian experiment has six components: a steel box, a cat, a radioactive element, a Geiger counter, a hammer and a vial of cyanide. The cat is put in the steel box; the lid is closed. No one can see what’s happening inside. During any given interval of time, the radioactive element may or may not emit a high-energy particle. If it does, the Geiger counter detects it and triggers the hammer to smash the vial, releasing poisonous fumes that kill the cat. If it doesn’t, the cat survives.

According to the rules of quantum mechanics, the radioactive particle exists as a wave function in all its possible states — both emitted and not emitted. A single, definite state crystallizes only upon measurement. What does that mean for the cat? Is it both alive and dead until someone opens the box for a look? Schrödinger ridiculed the notion of a cat — or anything — existing in two different conditions at once.

To some physicists, Schrödinger’s thought experiment shows that the wave function can’t be real, that it represents nothing more than the probabilities of different events. The cat is alive or dead, not alive and dead. The cat’s condition is determined before anyone opens the box. The only thing that changes when the box opens is our knowledge of the cat’s fate.

Cards Against Reality

In our everyday world, it seems, the laws of quantum theory lead to absurd results. But what about that two-slit experiment? If the wave function isn’t actually real, what creates those light and dark bands?

Four years ago, Matthew Pusey of the Perimeter Institute in Waterloo, Ontario, Jonathan Barrett, then at the University of London, and Terry Rudolph at Imperial College London published a paper in Nature Physics where they argued convincingly that quantum waves must be real. In an interview with Nature, Clemson physicist Valentini said, “I don’t like to sound hyperbolic, but I think the word ‘seismic’ is likely to apply to this paper.”

Pusey, Barrett and Rudolph’s theorem, known as PBR, uses a sophisticated mathematical argument to show that any interpretation of quantum mechanics that doesn’t treat the wave function as a real object invariably leads to results that contradict quantum theory itself. If they’re right and the wave function is real, interpretations like Everett’s Many Worlds, which take the reality of the wave function as a given, could start to seem more plausible. In that case, Schrödinger’s cat would be alive in one universe, dead in another. Alternatively, fans of Bohr’s view could claim that the cat exists as a fuzzy quantum wave inside the closed box; the frazzled feline would indeed be in a combined alive-dead state until someone takes a look.

To get the gist of the PBR argument, consider a simple card game between you and a dealer involving two decks of cards. One deck holds only red cards, the other deck only aces. The dealer gives you a card and asks which deck it came from. In most cases the answer will be easy. But for two cards — the two red aces — there’s no way to tell. The aces could come from either deck. That’s fine with a deck of cards, but the quantum version doesn’t play so nicely.

(Credit: Richard Kail/Getty Images)

If the wave function is not a real physical object and instead only measures experimental probabilities, then more than one wave function could describe a single physical state, say the position of a photon (just like that red ace could come from either deck). The notion that a slew of different wave functions could describe the same underlying reality falls apart in quantum mechanics, says Pusey. Reality can’t come from two decks. He and his colleagues showed that the probabilistic interpretation becomes a problematic one.

“It leads to so many possibilities that you can prove that quantum mechanics wouldn’t allow it,” says Pusey. “It wouldn’t make sense for one physical state to be compatible with so many different wave functions. The predictions those wave functions make are so different.” The PBR theorem shows that quantum states must therefore correspond uniquely with something that’s real — that is, it proves the wave function actually exists and is not just an abstract measure of probability.

Despite some rave reviews, the PBR result hasn’t changed many minds. “I was a bit disappointed that the people who liked it were the people who already believed the conclusion,” says Pusey. The naysayers instead deny one of PBR’s main assumptions: that there exists an objective reality we can measure in the first place.

A Malleable Universe

The notion of a completely objective reality is the bedrock principle of science, which is the main reason Einstein was so uncomfortable with Bohr’s “nothing exists without observation” take on quantum theory. Yet Christopher Fuchs, a physicist now at the University of Massachusetts, and Ruediger Schack of Royal Holloway University of London disagree. They contend that Bohr was on to something: Our notion of an objective reality needs modification. The physical world cannot be separated from our own efforts to probe it. How could it be otherwise, since we ourselves are embedded in the very world we’re seeking to understand?

They call their way of looking at quantum mechanics QBism, a modified version of a theory they developed with University of New Mexico physicist Carlton Caves called Quantum Bayesianism. QBism combines quantum mechanics with Bayesian probability, a variation on standard probability in which the odds of any given event are revised as one gains more knowledge of the many possible conditions tied to the event. For example, if a patient complains of headaches to a doctor, the initial odds of a diagnosis of brain cancer might be low. As the doctor examines the patient, the odds of a cancer diagnosis may go up or down.

QBism applies similar reasoning to physics experiments: Whenever physicists perform an experiment, they are updating their own subjective knowledge. There is no fixed underlying reality that different observers can independently experience. Just as a doctor must assess each patient individually, so too must a physicist approach the fresh, ever-changing phenomena presented by the quantum world. In QBism, the experimentalist cannot be separated from the experiment — both are immersed in the same living, unpredictable moment.

“If QBism says one radical and important thing about the nature of reality, then observer participancy is it,” says Schack. “Subjects matter. And reality, if QBism is right, cannot be conceived without always including the subject. That’s certainly a bold statement about the real world, about reality. It’s just a feature of reality that is very fundamental.”

Quantum theory, Schack says, offers profound observations about the real world, but the theory itself is not a description of the world. He posits that the right way to think of quantum mechanics is as a set of rules about how to correctly conduct experiments.

“Whether you see a wave or particle depends on what question you ask,” says Schack. “What do physicists do? They choose experiments. You could describe any experiment as a gamble on the outcome. Quantum mechanics is a useful guide to action: It tells you how to put together your experimental apparatus so that it works in the end.”

Schack says he and Fuchs like to use a term they’ve borrowed from the American philosopher William James, who saw reality as being “malleable.” QBism, says Schack, makes the same point. What sort of universe do we inhabit? Is it like a giant machine, with the future evolving from the past according to immutable laws? Or is it inherently interactive? “Why would you want a clockwork universe?” he asks. “QBism gives a much richer universe. It’s a reality in which we matter far more than we ever could in a clockwork universe.”

Back to the Beginning

If QBism is right, if the wave function isn’t real and quantum theory doesn’t give us a direct description of reality, it leaves unanswered the most basic of all questions: What then is the quantum world actually like? What is it made of? Particles? Waves? Something beyond our ability to imagine? For theoretical physicist Valentini, the answer has been there from the earliest days of quantum theory.

In 1927, the French physicist Louis de Broglie, who first proposed that particles could behave like waves, developed an interpretation of quantum mechanics called pilot wave theory, where waves and particles are both equally real. Each particle rides its own wave. The pilot wave is a bizarre thing — it exists in multiple dimensions — but it is a real physical object.

Pilot wave theory explains the strange two-slit experiment: A particle always goes through one slit or the other; at the same time its pilot wave travels through both slits. But there’s no wave-particle paradox because the experimental apparatus and the wave-surfing particle all form one interdependent system described by a pilot wave. Adding or removing a detector from the experiment changes the system’s pilot wave and the pattern on the screen.

Bohr and other physics luminaries rejected de Broglie’s idea, though, in part because it didn’t provide any way to predict the exact paths of particles. In the 1950s, David Bohm, a leading American physicist, did some additional work with de Broglie’s idea, but for the most part pilot wave theory languished until the early 1990s when it hooked Valentini as a grad student.

Valentini has devoted his career to almost single-handedly resurrecting the pilot wave idea. Now his years of work actually have a chance — a small one, he admits — of being vindicated. Of the many interpretations of quantum theory, pilot wave theory is unique in that Valentini has found a way in which it might be experimentally tested. No other interpretation of quantum mechanics can make that claim. Many Worlds, Bohr’s interpretation and others are all experimentally indistinguishable — they reproduce the results of standard quantum theory. But if Valentini is right, certain effects predicted in pilot wave theory may have left an imprint on the cosmic microwave background, the primordial radiation left over from the Big Bang that still pervades all of space.

The temperature of that radiation is almost a perfectly uniform 2.725 degrees Celsius above absolute zero. Detailed observations, however, have found slight variations in the radiation. Standard quantum theory can explain nearly all of these variations, but in 2015, new data released by the European Space Agency’s Planck spacecraft revealed evidence of small anomalies in the background radiation. And that is just the kind of thing Valentini has been looking for. While conventional quantum theory predicts that random quantum fluctuations in the early universe have left celestial imprints, pilot wave theory predicts fluctuations that are less random, leaving slightly different wrinkles in the cosmic microwave background radiation.

“It’s tantalizing,” Valentini says. “We’re carrying out the analysis partly to understand things better and partly to see what the data can tell us about the predictions that we have.” Another two years of data and analysis should settle the question.

Valentini also feels encouraged by the PBR theorem because it lends support to a central tenet of pilot wave theory: The wave function is real. Nevertheless, he realizes the odds of his life’s work being confirmed are slim. “Who knows what will happen?” he says. “It may be 20 years of work down the drain. We don’t know. You have different camps pushing hard for their own interpretation. But really, if we’re going to be honest, as scientists, if a member of the public asks us what is the meaning of our most basic theory of physics, I think we all have to say we don’t know.”

Tim Folger is a contributing editor to Discover and series editor of The Best American Science and Nature Writing, an annual anthology. He lives in New Mexico.

[This article originally appeared in print as “The War Over Reality.”]

Source: Bron: https://www.discovermagazine.com/the-sciences/why-quantum-mechanics-still-stumps-physicists

Waarom kwantummechanica nog steeds fysici verbluft (deel 1)

Bijna 100 jaar nadat de kwantummechanica werd geïntroduceerd, zijn wetenschappers het er nog steeds niet over eens wat het betekent

Door Tim Folger Apr 11, 2017

Bron: https://www.discovermagazine.com/the-sciences/why-quantum-mechanics-still-stumps-physicists

Hier is een gedachte-experiment: stel je voor dat astronomen niet echt geloofden dat de Aarde om de zon draait of dat onze wereld dagelijks om zijn as draait. Wat als ze het heliocentrische model van het zonnestelsel slechts zouden zien als een abstract wiskundig hulpmiddel om planeten en sterren met grote precisie te volgen, niet als een letterlijke beschrijving van hoe de dingen zijn? Wat als ze beweerden dat we niet echt kunnen weten of de zon om de Aarde draait of omgekeerd en bovendien dat dergelijke vragen niet eens de moeite waard waren om te stellen?

Het zou belachelijk zijn. Geen enkele respectabele wetenschapper zou ooit zulke opvattingen koesteren – behalve als het gaat om de krachtigste theorie in de geschiedenis van de natuurkunde: de kwantummechanica. Meer dan een eeuw na zijn geboorte blijft de kwantummechanica, de fysica van atomen, fotonen en andere deeltjes, even verbijsterend als altijd. Experimenten hebben herhaaldelijk de vreemde voorspellingen van de theorie bevestigd met fenomenale nauwkeurigheid – in sommige gevallen tot een dozijn of meer decimalen. Technologieën die ervan zijn afgeleid, drijven de wereldeconomie aan: de elektronica-industrie zoals we die kennen zou niet bestaan ​​zonder de kwantummechanica. Het verklaart waarom de lucht blauw is en hoe sterren hun licht genereren. En toch, ondanks de onbetwiste dominantie en praktische betekenis van de theorie, zijn natuurkundigen het nog steeds niet eens over wat het betekent of wat het zegt over de aard van de werkelijkheid. Sommige natuurkundigen ontkennen dat de kwantummechanica elke vorm van objectieve realiteit beschrijft.

Minstens een dozijn interpretaties van de kwantummechanica strijden om de harten en geesten van natuurkundigen, elk met een radicaal andere kijk op de werkelijkheid. Adán Cabello, een natuurkundige aan de Universiteit van Sevilla in Spanje, vatte onlangs de verwarrende, onverenigbare reeks gezichtspunten samen als ‘een kaart van waanzin’.

Er is het Many Worlds-model, dat het bestaan ​​van ontelbare parallelle werkelijkheden veronderstelt. Als dat een beetje extravagant lijkt, geef je misschien de voorkeur aan QBism (uitgesproken als “kubisme”), waar de kwantumwereld en de wetenschappers die het observeren onlosmakelijk met elkaar verbonden zijn in een onvoorspelbaar, interactief universum. Het centrale probleem is dat natuurkundigen niet weten wat de meest elementaire vergelijking (formule) van de kwantumtheorie – een wiskundige formulering die de golffunctie wordt genoemd – eigenlijk vertegenwoordigt. Beschrijft het een fundamenteel kenmerk van de fysieke wereld? Of is het juist een handige manier om experimentele resultaten te voorspellen?

“Er is geen standaardinterpretatie”, zegt Antony Valentini, een theoretisch natuurkundige aan de Clemson University. “Het is buitengewoon. Ik ken geen vergelijkbare episode in de geschiedenis van de wetenschap.”

Fractal (Credit: Pixabay)

Waar blijft dat gebrek aan consensus van natuurkundigen? Kwantummechanica is immers niet alleen een tak van de natuurkunde; het is moderne natuurkunde. “De meeste dingen die mensen op bijna elke verdieping van elke natuurkundeafdeling ter wereld doen, zijn op de een of andere manier kwantum”, zegt Matt Leifer, een natuurkundige aan de Chapman University in Californië.

Als natuurkundigen het niet eens kunnen worden over – of niet weten – waar hun heersende theorie over gaat, betekent dit dan dat ze een muur hebben geraakt in termen van het begrijpen van de wereld? Recente pogingen om sommige interpretaties uit te sluiten hebben ons niet dichter bij een antwoord gebracht. Als er één ding zeker is over de kwantumwereld, dan is het dat er nooit iets is vastgesteld.

Licht en schaduw

De verwarring dateert uit de begindagen van de kwantummechanica, in de jaren twintig, toen Niels Bohr in botsing kwam met Albert Einstein. Bohr, een bijna orakelfiguur in de 20e-eeuwse natuurkunde, betoogde dat natuurkundigen bij het bestuderen van de atomaire wereld het idee van een realiteit die onafhankelijk van hun eigen metingen bestaat, moeten opgeven. De boodschap van de kwantummechanica is onontkoombaar, zei hij, en buitengewoon vreemd: atomen en alle andere deeltjes hebben geen definitieve posities, energieën of eigenschappen totdat ze in een experiment worden gemeten. Voor alle duidelijkheid: het is niet alleen dat natuurkundigen niet weten wat de eigenschappen zijn; de eigenschappen komen letterlijk pas tot stand op het moment van de meting.

Einstein verwierp de opvatting van Bohr categorisch. Terwijl hij op een maanverlichte nacht over het terrein van het Institute for Advanced Study aan de Princeton University slenterde, vroeg Einstein op beroemde wijze aan een collega: “Geloof je echt dat de maan er niet is als je er niet naar kijkt?” Einstein bleef tot zijn dood ervan overtuigd dat de kwantummechanica slechts een opstap was naar een diepere, meer omvattende theorie die de griezelige verschijnselen van de kwantumwereld zou begrijpen.

Wat maakt kwantummechanica zo verwarrend?

Herinner je het volgende iconische, vaak herhaalde experiment: Een lichtstraal schijnt door twee parallelle spleten die in een barrière zijn gesneden en valt op een strook fotografische film achter de barrière. Aangezien licht zelf bestaat uit een stroom deeltjes – fotonen – lijkt het redelijk om aan te nemen dat de fotonen op weg naar de film door de ene of de andere spleet gaan. En als natuurkundigen het experiment opzetten met een fotondetector bij elke spleet, dan is dat inderdaad wat ze zien: fotonen razen willekeurig door de eerste spleet of de tweede, wat resulteert in twee afzonderlijke klompjes stippen op de film.

(Credit: Wikimedia Commons)

Double-slit x-ray simulation monochromatic blue-white

Een kleine aanpassing verandert de resultaten echter ingrijpend. Als natuurkundigen de fotondetectoren verwijderen, verandert het patroon dat op de film is gemaakt volledig. In plaats van twee clusters van stippen verschijnen afwisselend lichte en donkere banden over de film, wat natuurkundigen een interferentiepatroon noemen. Dat patroon zou zich alleen kunnen vormen als elk afzonderlijk foton zich op de een of andere manier als een golf zou verspreiden en tegelijkertijd door beide spleten zou gaan. Op de film ontstaan ​​heldere banden waar twee golftoppen samenvallen; overlappende toppen en dalen creëren de donkere banden. Met andere woorden, fotonen gedragen zich als deeltjes met detectoren en als golven zonder detectoren.

Voor Bohr toonde dit aan dat de objecten die we als deeltjes beschouwen, geen definitief bestaan ​​hebben totdat ze worden waargenomen. Op de allerkleinste schaal is de werkelijkheid wazig, niet scherp gedefinieerd – tenminste als niemand kijkt.

Aangezien alles uiteindelijk uit die wazige “deeltjesgolven” bestaat, waarom zien we dan geen kwantumeffecten in ons dagelijks leven? Waarom zijn mensen, bomen en al het andere niet zo golvend en onduidelijk als de atomen waaruit ze zijn gemaakt? Het korte antwoord is dat niemand het echt weet, vandaar de gekke overvloed aan kwantuminterpretaties. Op de een of andere manier proberen de vele versies allemaal een enkele vraag te beantwoorden: zijn deze ‘kwantumgolven’ zo echt als de grond onder je voeten, of zijn het puur wiskundige constructies zonder enig fysiek bestaan?

(wordt vervolgt. Als je toch de hele artikel wil lezen, staat het als een document hier)

============================= =========================================

In English

Why Quantum Mechanics Still Stumps Physicists (part 1)

Nearly 100 years after quantum mechanics was introduced, scientists still don’t agree on what it means

By Tim Folger Apr 11, 2017

Source: https://www.discovermagazine.com/the-sciences/why-quantum-mechanics-still-stumps-physicists

Here’s a thought experiment: Imagine astronomers didn’t really believe that Earth orbits the sun or that our world turns daily on its axis. What if they viewed the heliocentric model of the solar system merely as an abstract mathematical tool to track planets and stars with great precision, not as a literal description of the way things are? What if they claimed we can’t truly know whether the sun orbits Earth or vice versa and, moreover, that such questions were not even worth asking?

It would be preposterous. No respectable scientist would ever entertain such notions — except when it comes to the most powerful theory in the history of physics: quantum mechanics. More than a century after its birth, quantum mechanics, the physics of atoms, photons and other particles, remains as baffling as ever. Experiments have repeatedly confirmed the theory’s weird predictions with phenomenal accuracy — to a dozen or more decimal places in some cases. Technologies derived from it drive the world’s economy: The electronics industry as we know it wouldn’t exist without quantum mechanics. It explains why the sky is blue and how stars generate their light. And yet, despite the theory’s unquestioned dominance and practical significance, physicists still don’t agree on what it means or what it says about the nature of reality. Some physicists deny that quantum mechanics describes any sort of objective reality.

At least a dozen interpretations of quantum mechanics vie for physicists’ hearts and minds, each with a radically different take on reality. Adán Cabello, a physicist at the University of Seville in Spain, recently summed up the confusing, incompatible gaggle of viewpoints as “a map of madness.”

There’s the Many Worlds model, which posits the existence of innumerable parallel realities. If that seems a tad extravagant, you might prefer QBism (pronounced “cubism”), where the quantum world and the scientists who observe it are inextricably bound together in an unpredictable, interactive universe. The central issue is that physicists don’t know what the most basic equation of quantum theory — a mathematical formulation called the wave function — actually represents. Does it describe a fundamental feature of the physical world? Or is it instead just a handy way to predict experimental results?

“There is no standard interpretation,” says Antony Valentini, a theoretical physicist at Clemson University. “It’s extraordinary. I don’t know of any comparable episode in the history of science.”

Fractal (Credit: Pixabay)

Where does that lack of consensus leave physicists? After all, quantum mechanics isn’t just a branch of physics; it is modern physics. “Most of the things that people are doing on almost every floor of every physics department in the world are quantum in one way or another,” says Matt Leifer, a physicist at Chapman University in California.

If physicists can’t agree on — or don’t know — what their reigning theory is all about, does it mean they’ve hit a wall in terms of understanding the world? Recent efforts to rule out some interpretations haven’t brought us any closer to an answer. If there’s one thing certain about the quantum world, it’s that nothing’s ever settled.

Light and Shadow

about:blank about:blank The confusion dates to the early days of quantum mechanics, in the 1920s, when Niels Bohr clashed with Albert Einstein. Bohr, an almost oracular figure in 20th-century physics, argued that when studying the atomic world, physicists must give up the notion of a reality that exists independently of their own measurements. The message of quantum mechanics is inescapable, he said, and exceedingly strange: Atoms and all other particles do not possess definite positions, energies or any properties until they are measured in an experiment. To be clear, it’s not just that physicists don’t know what the properties are; the properties literally only come into being at the time of the measurement.

Einstein categorically rejected Bohr’s view. While strolling the grounds of the Institute for Advanced Study in Princeton University one moonlit night, Einstein famously asked a colleague, “Do you really believe the moon is not there when you are not looking at it?” Einstein remained convinced until his death that quantum mechanics was only a steppingstone toward a deeper, more comprehensive theory that would make sense of the uncanny phenomena of the quantum world.

What makes quantum mechanics so confounding? Consider the following iconic, oft-repeated experiment: A beam of light shines through two parallel slits cut into a barrier and falls on a strip of photographic film beyond the barrier. Since light itself consists of a stream of particles — photons — it seems reasonable to assume that the photons pass through one slit or the other en route to the film. And if physicists set up the experiment with a photon detector at each slit, that is indeed what they see: Photons hurtle randomly through either the first slit or the second, which results in two separate clumps of dots forming on the film.

(Credit: Wikimedia Commons)

A slight adjustment, however, profoundly alters the results. If physicists remove the photon detectors, the pattern created on the film changes completely. Instead of two clusters of dots, alternating light and dark bands appear across the film, what physicists call an interference pattern. That pattern could form only if each individual photon somehow spread out like a wave and went through both slits simultaneously. Bright bands develop on the film where two wave crests coincide; overlapping crests and troughs create the dark bands. In other words, photons behave like particles with detectors present and like waves without detectors.

For Bohr, this showed that the objects we consider particles don’t have a definite existence until they are observed. On the very smallest scales, reality is blurry, not sharply defined — at least when no one is looking.

Since everything ultimately consists of those blurry particle-waves, why don’t we see quantum effects in our everyday lives? Why aren’t people, trees and everything else as wavy and indistinct as the atoms they’re made of? The short answer is no one really knows, hence the crazy cornucopia of quantum interpretations. In one way or another, the manifold versions all seek to answer a single question: Are these “quantum waves” as real as the ground beneath your feet, or are they purely mathematical constructs without any physical existence?

( to be continued. If you want to read the whole article, the document is HERE)

Fysiologie van onsterfelijkheid?

Vergeet wat je ouders je hebben geleerd, leraren op school, leraren op de uni, enz. Het is tijd om anders naar de wereld te kijken.

1. De objectieve wereld, onafhankelijk van de waarnemer, bestaat niet.

Deze wereld heeft bepaalde eigenschappen. Deze eigenschappen moeten niet worden gezien als bestaand los van de waarnemer. Neem bijvoorbeeld een klapstoel. Vanuit jouw oogpunt is deze stoel klein, maar vanaf het standpunt van de mier is hij gewoon enorm. Je voelt deze stoel solide, en het neutrino zal er met een enorme snelheid doorheen scheren, omdat voor het neutrino de atomen er enkele kilometers van elkaar verwijderd zullen zijn. Kortom, geen van de objectieve feiten waarop we onze realiteit gewoonlijk baseren, is fundamenteel betrouwbaar. Ze zijn zoals jij ze interpreteert.

Honderden dingen en processen die in je lichaam plaatsvinden en waar je geen aandacht aan schenkt – ademhaling, spijsvertering, bloeddruk verhogen of verlagen, groei van nieuwe cellen, reiniging van gifstoffen, enz., kunnen onder je controle worden gebracht. Alleen al het feit dat je jouw aandacht vestigt op de automatische processen die in je lichaam plaatsvinden, zal ook het verouderingsproces veranderen, aangezien het vermogen van ons lichaam om deze functies te coördineren na verloop van tijd afzwakt.

Alle zogenaamde automatische functies, van hartslag en ademhaling tot spijsvertering en hormonale regulatie, kunnen onder controle worden gebracht. In laboratoria die lichaam en geest onderzoeken, hebben patiënten geleerd door hun wilskracht te gebruiken hun bloeddruk te verlagen of de afscheiding van zuren te verminderen die tot zweren leiden. Waarom deze vermogens niet gebruiken in het verouderingsproces? Waarom oude perceptiestereotypen niet vervangen door nieuwe? Om dit te doen, zijn er tal van technieken die een persoon van dienst kan zijn.

2. Ons lichaam wordt gevormd uit energie en informatie.

Het lijkt dat ons lichaam is samengesteld uit dichte materie, maar de natuurkunde beweert dat elk atoom voor 99,9999% lege ruimte is, en subatomaire deeltjes, die met de snelheid van het licht door deze ruimte vliegen, zijn in feite stralen van trillingsenergie. Het hele universum, inclusief je lichaam, is een niet-materie en bovendien een denkende niet-materie. De leegte in elk atoom pulseert als een onzichtbare mind. Genetici plaatsen deze intelligentie in DNA, maar alleen om meer overtuigend te zijn. Leven ontstaat wanneer DNA zijn gecodeerde bewustzijn vertaalt in zijn actieve dubbelganger, RNA, dat op zijn beurt de cel binnendringt en stukjes van het bewustzijn overdraagt ​​aan duizenden enzymen, die vervolgens de stukjes van de mind gebruiken om eiwitten te maken. Op elk punt in deze reeks moeten energie en informatie met elkaar worden uitgewisseld, anders is er geen leven.

Naarmate we ouder worden, neemt de stroom van deze intelligentie om verschillende redenen af. Deze leeftijdsgebonden slijtage zou onvermijdelijk zijn als een persoon alleen uit materie zou bestaan, maar entropie heeft geen invloed op de geest – het onzichtbare deel van ons is niet onderhevig aan tijd. In India wordt deze stroom van geest prana genoemd en kan worden gecontroleerd, verhoogd of verlaagd, heen en weer bewogen en gemanipuleerd om het fysieke lichaam jong en gezond te houden.

3. Geest en lichaam zijn één.

Bewustzijn kan zich zowel op het niveau van gedachten als op het niveau van moleculen uitdrukken. Een emotie zoals angst kan bijvoorbeeld worden gedefinieerd als een abstract gevoel en als een tastbare molecule van een van de hormonen – adrenaline. Zonder angst is er geen hormoon; zonder het hormoon is er geen angst. Waar ons denken ook naar streeft, het brengt de vorming van de overeenkomstige chemische substantie met zich mee.

De geneeskunde begint net de verbinding tussen lichaam en geest te gebruiken. De bekende placebo geeft in 30% van de gevallen dezelfde verlichting als wanneer de patiënt een pijnstiller slikt, maar de placebo heeft meer functies dan een simpele pil, omdat het niet alleen als pijnstiller kan worden gebruikt, maar ook als een middel om de bloeddruk te verlagen en zelfs om tumoren te bestrijden. Aangezien één onschadelijke pil tot zulke verschillende resultaten leidt, is de conclusie dat het lichaam-brein elke vorm van biochemische reactie kan veroorzaken, als de mind maar de juiste stelling of aanname krijgt.

Als we de stelling zouden kunnen gebruiken om niet oud te worden, dan zou het lichaam het puur automatisch uitvoeren. De afname van kracht op oudere leeftijd is grotendeels te wijten aan het feit dat mensen deze afname verwachten.

4. Biochemie van het lichaam is een product van bewustzijn.

De mening dat het lichaam een ​​bewusteloze machine is, heerst in de hoofden van de meeste mensen, maar niettemin is het percentage mensen dat sterft aan kanker en hartaandoeningen aanzienlijk hoger onder degenen die voortdurend onder psychologische stress staan ​​dan onder degenen die door het leven worden gedreven door een niet aflatend gevoel van doelbewustheid en voorspoed.

Volgens het nieuwe paradigma maakt bewustzijn een significant verschil in het verouderingsproces. Wanhopen over ouder worden betekent nog sneller ouder worden. De bekende waarheid “Je bent zo oud als je denkt dat je bent” heeft een heel diepe betekenis.

5. Perceptie is een aangeleerd fenomeen.

Verschillende emotionele bewustzijnsvelden – liefde, haat, vreugde en walging – stimuleren het lichaam geheel verschillend. Neergeslagen door het verlies van werk, projecteert een persoon dit verdriet naar alle delen van het lichaam – en als gevolg daarvan stoppen de hersenen met het afscheiden van neurotransmitters, dalen de hormonale niveaus, wordt de slaapcyclus verstoord, worden neuropeptide-receptoren op het buitenoppervlak van cellen vervormd, worden bloedplaatjes plakkeriger en hebben ze de neiging zich op te hopen, zodat er zelfs in tranen van verdriet meer chemicaliën zijn dan in tranen van vreugde. In vreugde is het hele chemische profiel volledig omgedraaid.

Alle biochemie vindt plaats in het bewustzijn; elke cel is zich volledig bewust van wat en hoe je denkt. Zodra je dit feit internaliseert, verdwijnt de hele illusie dat je het slachtoffer bent van een onredelijk, losgelaten en degenererend lichaam.

6. Impulsen van de mind geven het lichaam elke seconde nieuwe vormen.

Zolang er nieuwe impulsen in de hersenen blijven stromen, is het lichaam ook in staat om op nieuwe manieren te reageren. Dit is het hele punt van het geheim van de jeugd. Nieuwe kennis, nieuwe vaardigheden, nieuwe manieren om de wereld te zien dragen bij aan de ontwikkeling van het lichaam en geest, en terwijl dit gebeurt, blijft er een uitgesproken natuurlijke neiging om zichzelf elke seconde te vernieuwen. Daar waar er geloof zich nestelt, dat het lichaam na verloop van tijd verwelkt, laat het geloof opbloeien, dat het lichaam elk moment vernieuwd wordt.

7. Ondanks het schijnbare feit dat we afzonderlijke individuen zijn, zijn we allemaal gebonden aan de schema’s van het bewustzijn die de kosmos besturen.

Vanuit het oogpunt van een verenigd bewustzijn, maken mensen, dingen en gebeurtenissen die ‘daarbuiten’ plaatsvinden allemaal deel uit van je lichaam. Je raakt bijvoorbeeld een materieel, tastbaar rozenblaadje aan, maar het ziet er in werkelijkheid anders uit: een straal energie en informatie (je vinger) raakt een andere straal en informatie van de roos aan. Je vinger en het ding dat je aanraakt zijn slechts kleine informatiebundels uit een oneindig veld dat het heelal wordt genoemd. Als je je dit realiseert, zul je begrijpen dat de wereld geen bedreiging voor je is, maar alleen je oneindig uitgebreide lichaam. De wereld ben jij.

8. Tijd is niet absoluut. De werkelijke basis van alle dingen is de eeuwigheid, en wat wij tijd noemen, is in feite de eeuwigheid, uitgedrukt in kwantitatieve termen.

Tijd is altijd gezien als een pijl die vooruitvliegt, maar de complexe geometrie van de kwantumruimte brak deze mythe volledig af. De tijd kan, volgens de bepalingen ervan, in alle richtingen bewegen en zelfs stoppen. Daarom creëert alleen je bewustzijn de tijd die je ervaart.

9. Ieder van ons leeft in een realiteit die niet onderhevig is aan veranderingen en die buiten elke verandering ligt. Kennis van deze realiteit zal ons in staat stellen om alle veranderingen in eigen hand te nemen.

Momenteel is de enige fysiologie die u kunt volgen- een “tijdgebaseerde” fysiologie. Het feit dat tijd gebonden is aan bewustzijn houdt echter in dat je een heel andere manier van functioneren kunt kiezen – de fysiologie van onsterfelijkheid, die je naar de kennis van onveranderlijkheid wendt.

Van kinds af aan voelen we dat er een deel in ons is dat nooit verandert. Dit onveranderlijke deel werd door de wijzen van India eenvoudig “IK” genoemd. Vanuit het gezichtspunt van een verenigd bewustzijn kan de wereld worden uitgelegd als een stroom van Spirit – het is bewustzijn. Daarom is ons belangrijkste doel om een ​​hechte relatie met ons “IK” of “IK BEN” op te bouwen.

10. We zijn geen slachtoffers van veroudering, ziekte en dood. Ze maken deel uit van het script, niet de waarnemer zelf, die aan geen enkele verandering onderhevig is.

Het leven in je eigen bron is creativiteit. Als je je geest aanraakt, raak je de creatieve kern aan. Volgens het oude paradigma bestuurt DNA het leven. In het nieuwe paradigma heeft bewustzijn de controle over het leven.

We vallen ten prooi aan veroudering, ziekte en dood als gevolg van onze kennislacunes over onszelf. Het bewustzijn verliezen betekent het verlies van de mind; de mind verliezen betekent de controle verliezen over het eindproduct van de mind – het lichaam. Daarom is de meest waardevolle les die door het nieuwe paradigma wordt geleerd deze: als je je lichaam wilt veranderen, verander dan eerst je bewustzijn. Kijk eens naar de aarde, waar niemand oud wordt – het is niet ‘daarbuiten’, maar in Ons.

CC: Diepste Droom / Son Dremuchiy

(Bron: telegram https://t.me/asoniaromashkinasluboviu  А Соня Ромашкина с Любовью Кому надо…,)

== == == == == == == == == == ==

физиология бессмертия?

Забудь о том, чему тебя учили родители, учителя в школе, преподаватели в институте и т.д. Пора взглянуть на мир иначе.

1. Объективного мира, независимого от наблюдателя, не существует.

Этот мир обладает определенными свойствами. Эти свойства не следует воспринимать как отдельно существующие от наблюдателя. Например, возьмем складной стул. С вашей точки зрения этот стул невелик, а вот со стороны муравья он просто огромен. Вы ощущаете этот стул твердым, а нейтрино пронесется через него с огромной скоростью, поскольку для него атомы будут находиться друг от друга на расстоянии нескольких километров. Короче, ни один из объективных фактов, на которых мы обычно основываем свою реальность не являются в основе своей достоверными. Они такие, как вы их истолкуете.

Сотни вещей и процессов, происходящих в вашем организме и на которые вы не обращаете внимание, – дыхание, пищеварение, повышение или понижение кровяного давления, рост новых клеток, очищение от токсинов и т. д. могут быть взяты вами под контроль. Сам факт фокусировки вашего внимания на автоматических процессах, происходящих в вашем теле, изменит и процесс вашего старения, поскольку с течением времени способность нашего организма к координации этих функций слабеет.

Все так называемые непроизвольные функции, от сердцебиения и дыхания до пищеварения и гормональной регуляции могут быть взяты под контроль. В лабораториях, где исследуются ум и тело, пациенты научились силой воли понижать кровяное давление или уменьшать выделение кислот, ведущих к язве. Почему бы не использовать эти способности в процессах старения? Почему бы не сменить старые стереотипы восприятия на новые? Для этого существует многочисленные техники, которые человек может поставить на службу себе.

2. Наши тела сформированы из энергии и информации.

Нам кажется, наши тела состоят из плотной материи, но физика утверждает, что каждый атом на 99,9999 % состоит из пустого пространства, а субатомные частицы, со скоростью света проносящиеся через это пространство, в действительности представляют пучки вибрационной энергии. Вся Вселенная, включая и ваше тело – это не-вещество и причем не-вещество мыслящее. Пустота внутри каждого атома пульсирует в виде незримого разума. Генетики помещают этот разум в ДНК, но лишь для убедительности. Жизнь возникает, когда ДНК переводит свой закодированный разум в своего активного двойника РНК, которая в свою очередь внедряется в клетку и передает биты разума тысячам энзимов, а те потом используют бит разума для производства протеинов. В каждой точке этой последовательности энергия и информация должны обмениваться между собой, иначе никакой жизни не будет.

Когда мы стареем, поток этого разума по разным причинам снижается. Этот возрастной износ был бы неизбежен, если бы человек состоял только из материи, но энтропия не затрагивает разум – невидимая часть нас самих не подвластна времени. В Индии этот поток разума называют праной и могут управлять ею, увеличивать или уменьшать, перемещать туда-сюда и манипулировать ею с целью сохранения физического тела молодым и здоровым.

3. Ум и тело едины.

Разум может выражать себя и на уровне мыслей и на уровне молекул. Например, такую эмоцию как страх, можно определить как абстрактное чувство и как осязаемую молекулу одного из гормонов – адреналина. Без чувства страха нет и гормона, без гормона нет и чувства страха. На что бы не устремилась наша мысль, она влечет за собой и образование соответствующего химического вещества.

Медицина только начинает использовать связь ума и тела. Всем известное плацебо в 30% случаев дает такое же облегчение, как если бы больной принимал болеутоляющее средство, но у плацебо больше функций чем у простой таблетки, поскольку его можно использовать не только как болеутоляющее средство, но и как средство понижающее давление, и даже для борьбы с опухолями. Поскольку одна безобидная таблетка приводит к столь различным результатам, то непременно следует вывод, что ум-тело может создать какую угодно биохимическую реакцию, если только дать уму соответствующую установку.

Если бы нам удалось задействовать установку не стареть, то тело стало бы его выполнять чисто автоматически. Упадок сил в старческом возрасте по большому счету вызван тем, что люди ожидают этого упадка.

4. Биохимия тела – продукт сознания.

Мнение, что тело – неразумная машина превалирует в сознание большинства людей, но тем не менее процент людей, умерших от рака и сердечных заболеваний, значительно выше среди тех, кто постоянно находится в психологическом стрессе, чем у тех, кто движим по жизни неослабевающим чувством целеустремленности и благоденствия.

Согласно новой парадигме, сознание вносит существенное отличие в процесс старения. Отчаиваться по поводу старения – значит стареть еще быстрее. Общеизвестная истина «Ты являешься старым настолько, насколько себя мнишь» имеет весьма глубокий смысл.

5. Восприятие – заученный феномен.

Разные восприятия – любви, ненависти, радости и отвращения – стимулируют тело совершенно по-разному. Человек, удрученный потерей работы, проецирует эту печаль на все участки тела – и в результате мозг прекращает выделять нейротрансмиттеры, гормональный уровень падает, цикл сна нарушается, нейропептидные рецепторы на внешней поверхности клеток искажаются, тромбоциты становятся более клейкими и обнаруживают тенденцию к скапливанию, так что даже в слезах печали осадков химических веществ больше чем в слезах радости. В радости весь химический профиль совершенно меняется на противоположный.

Вся биохимия происходит внутри сознания; каждая клетка полностью сознает, что и как вы думаете. Как только вы усвоите этот факт, вся иллюзия по поводу того, что вы жертва неразумного, отданного на волю случая и дегенерирующего тела рассеется.

6. Импульсы разума ежесекундно придают телу новые формы.

До тех пор, пока новые импульсы продолжают поступать в мозг, тело тоже способно реагировать по-новому. В этом вся суть секрета молодости. Новые знания, новые умения, новые пути видения мира способствуют развитию ума-тела, и пока это происходит, остается ярко выраженной естественная тенденция к ежесекундному обновлению. Там, где гнездится ваша вера в то, что тело со временем увядает, взрастите веру в то, что каждый момент тело обновляется.

7. Несмотря на кажущуюся видимость того, что мы – отдельные индивиды, все мы привязаны к схемам разума, управляющего Космосом.

С точки зрения единого сознания, люди, вещи и события, происходящие «где-то там» – все являются частью вашего тела. Например, вы касаетесь твердого лепестка розы, но на самом деле это выглядит иначе: пучок энергии и информации (ваш палец) касается другого пучка и информации розы. Ваш палец и вещь, которой вы касаетесь, всего лишь маленькие пучки информации беспредельного поля, называемого Вселенной. Осознание этого поможет вам понять, что мир не угроза для вас, а только ваше беспредельно расширенное тело. Мир – это и есть вы.

8. Время не абсолютно. Реальная основа всех вещей – вечность, а то, что мы называем временем, в действительности представляет собой вечность, выраженную количественно.

Время всегда воспринималось в виде стрелы, летящей вперед, но комплексная геометрия квантового пространства разрушила этот миф окончательно. Время, согласно ее положениям, может перемещаться во всех направлениях и даже останавливаться. Поэтому только ваше сознание творит время, которое вы ощущаете.

9. Каждый из нас живет в реальности, не подверженной каким-либо изменениям и лежащей вне всяких перемен. Познание этой реальности позволит нам взять все перемены под свой контроль.

В настоящее время единственная физиология, которой вы можете придерживаться — это физиология, основанная на времени. Однако факт, что время привязано к сознанию, подразумевает, что вы можете выбрать и совершенно иной метод функционирования — физиологию бессмертия, что обращает вас к познанию неизменности.

С младенчества мы чувствуем, что в нас есть часть, которая никогда не меняется. Эту неизменную часть мудрецы Индии называли просто «Я». С точки зрения единого сознания, мир можно объяснить как поток Духа — он и есть сознание. Поэтому основная наша цель — это установить близкие отношения с нашим «Я».

10. Мы не жертвы старения, болезней и смерти. Они — часть сценария, а не самого наблюдателя, который не подвластен каким-либо переменам.

Жизнь в своем истоке — это творчество. Когда вы соприкасаетесь со своим разумом, вы соприкасаетесь с творящей сердцевиной. Согласно старой парадигме, контроль над жизнью осуществляет ДНК. Согласно новой парадигме, контроль над жизнью принадлежит осознанию.

Мы становимся жертвами старения, болезней и смерти в результате наших пробелов знаний о себе. Утратить осознание – значит потерять разум; потерять разум – значит потерять контроль над конечным продуктом разума -телом. Поэтому самый ценный урок, которому учит новая парадигма, таков: если вы хотите изменить свое тело, сначала измените сознание. Взгляните на землю, где никто не стареет, – она не «где-то там», а внутри Нас.

Сс. Сон Дремучий

(Source: telegram https://t.me/asoniaromashkinasluboviu  А Соня Ромашкина с Любовью Кому надо…, [13-Jan-22 11:13 AM] )

Een vijfde fundamentele kracht zou echt kunnen bestaan, maar die hebben we nog niet gevonden

(from Universe Today.com) Het universum wordt bestuurd door vier fundamentele krachten: zwaartekracht, elektromagnetisme en de sterke en zwakke kernkrachten. Deze krachten sturen de beweging en het gedrag van alles wat we om ons heen zien. Tenminste dat vinden wij. Maar de afgelopen jaren zijn er steeds meer aanwijzingen voor een vijfde fundamentele kracht. Nieuw onderzoek heeft deze vijfde kracht niet ontdekt, maar het laat wel zien dat we deze kosmische krachten nog steeds niet volledig begrijpen.

De fundamentele krachten maken deel uit van het standaardmodel van de deeltjesfysica. Dit model beschrijft alle verschillende kwantumdeeltjes die we waarnemen, zoals elektronen, protonen, antimaterie en dergelijke. Quarks, neutrino’s en het Higgs-deeltje maken allemaal deel uit van het model.

De term “kracht” in het model is een beetje een verkeerde benaming. In het standaardmodel is elke kracht het resultaat van een type dragerboson. Fotonen zijn het dragerboson voor elektromagnetisme. Gluonen zijn de dragerbosonen voor de sterke, en bosonen die bekend staan ​​als W en Z zijn voor de zwakken. Zwaartekracht maakt technisch gezien geen deel uit van het standaardmodel, maar er wordt aangenomen dat kwantumzwaartekracht een boson heeft dat bekend staat als het graviton. We begrijpen kwantumzwaartekracht nog steeds niet volledig, maar een idee is dat zwaartekracht kan worden verenigd met het standaardmodel om een ​​grote verenigde theorie (GUT) te produceren.

Elk deeltje dat we ooit hebben ontdekt, maakt deel uit van het standaardmodel. Het gedrag van deze deeltjes komt zeer nauwkeurig overeen met het model. We hebben naar deeltjes gezocht die verder gaan dan het standaardmodel, maar tot nu toe hebben we er nog nooit een gevonden. Het standaardmodel is een triomf van wetenschappelijk inzicht. Het is het toppunt van dekwantumfysica.

Deeltjes en interactiebosonen van het standaardmodel. Credit: Particle Data Group

Om te beginnen weten we nu dat het standaardmodel niet kan combineren met de zwaartekracht op de manier waarop we dachten. In het standaardmodel “verenigen” de fundamentele krachten zich op hogere energieniveaus. Elektromagnetisme en de zwakken combineren in de elektrozwakke, en de elektrozwakke verenigt zich met de sterken om de elektro nucleaire kracht te worden. Bij extreem hoge energieën zouden de elektro nucleaire en gravitatiekrachten zich moeten verenigen. Experimenten in de deeltjesfysica hebben aangetoond dat de unificatie-energieën niet overeenkomen.

Maar we zijn begonnen te leren dat het een aantal ernstige problemen heeft.

Observations of galaxies show the distribution of dark matter. Credit: X-ray: NASA/CXC/Ecole Polytechnique Federale de Lausanne, Switzerland/D.Harvey & NASA/CXC/Durham Univ/R.Massey; Optical & Lensing Map: NASA, ESA, D. Harvey (Ecole Polytechnique Federale de Lausanne, Switzerland) and R. Massey (Durham University, UK)

Meer problematisch is de kwestie van donkere materie. Donkere materie werd voor het eerst voorgesteld om te verklaren waarom sterren en gas aan de buitenrand van een melkwegstelsel sneller bewegen dan voorspeld door de zwaartekracht. Ofwel is onze zwaartekrachttheorie op de een of andere manier fout, of er moet een onzichtbare (donkere) massa in sterrenstelsels zijn. In de afgelopen vijftig jaar is het bewijs voor donkere materie echt sterk geworden. We hebben waargenomen hoe donkere materie sterrenstelsels clustert, hoe het wordt verdeeld binnen bepaalde sterrenstelsels en hoe het zich gedraagt. We weten dat het geen sterke wisselwerking heeft met gewone materie of zichzelf, en het vormt de meerderheid van de massa in de meeste sterrenstelsels.

We don’t understand most of the universe. Credit: Chandra X-ray Observatory

Dan is er donkere energie. Gedetailleerde waarnemingen van verre sterrenstelsels laten zien dat het heelal zich steeds sneller uitbreidt. Er lijkt een soort energie te zijn die dit proces aandrijft, en we begrijpen niet hoe. Het kan zijn dat deze versnelling het gevolg is van de structuur van ruimte en tijd, een soort kosmologische constante die ervoor zorgt dat het heelal uitdijt. Het kan zijn dat dit wordt aangedreven door een nieuwe kracht die nog moet worden ontdekt. Wat donkere energie ook is, het maakt meer dan twee derde van het universum uit.

Maar er is geen deeltje in het standaardmodel dat donkere materie zou kunnen vormen. Het is mogelijk dat donkere materie gemaakt kan worden van zoiets als kleine zwarte gaten, maar astronomische gegevens ondersteunen dat idee niet echt. Donkere materie is hoogstwaarschijnlijk gemaakt van een nog onontdekt deeltje, een deeltje dat het standaardmodel niet voorspelt.

Dit alles wijst erop dat het standaardmodel op zijn best onvolledig is. Er zijn dingen die we fundamenteel missen in de manier waarop het universum werkt. Er zijn veel ideeën voorgesteld om het standaardmodel te repareren, van supersymmetrie tot nog onontdekte quarks, maar één idee is dat er een vijfde fundamentele kracht is. Deze kracht zou zijn eigen dragerboson(en) hebben, evenals nieuwe deeltjes die verder gaan dan degene die we hebben ontdekt.

Deze vijfde kracht zou ook interageren met de deeltjes die we hebben waargenomen op subtiele manieren die in tegenspraak zijn met het standaardmodel. Dit brengt ons bij een nieuw artikel dat beweert bewijs te hebben voor een dergelijke interactie.

Het artikel kijkt naar een anomalie in het verval van helium-4-kernen en bouwt voort op een eerdere studie van beryllium-8-verval. Beryllium-8 heeft een onstabiele kern die vervalt in twee kernen van helium-4. In 2016 ontdekte het team dat het verval van beryllium-8 het standaardmodel enigszins lijkt te schenden. Wanneer de kernen zich in een aangeslagen toestand bevinden, kan het een elektron-positron-paar uitzenden terwijl het vervalt. Het aantal waargenomen paren onder grotere hoeken is hoger dan het standaardmodel voorspelt, en staat bekend als de Atomki-anomalie.

Er zijn veel mogelijke verklaringen voor de anomalie, waaronder een experimentfout, maar een verklaring is dat het wordt veroorzaakt door een boson, het team genaamd X17. Het zou het dragerboson zijn voor een (nog onbekende) vijfde fundamentele kracht, met een massa van 17 MeV. In het nieuwe artikel vond het team een ​​vergelijkbare discrepantie in het verval van helium-4. Het X17-deeltje zou deze anomalie ook kunnen verklaren.

Hoewel dit opwindend klinkt, is er reden om voorzichtig te zijn. Als je naar de details van het nieuwe artikel kijkt, zijn er een beetje vreemde gegevensaanpassingen. Kortom, het team gaat ervan uit dat X17 nauwkeurig is en laat zien dat de gegevens kunnen worden aangepast aan hun model. Aantonen dat een model de anomalieën kan verklaren, is niet hetzelfde als bewijzen dat je model de anomalieën verklaart. Andere verklaringen zijn mogelijk. Als X17 bestaat, hadden we het ook in andere deeltjesexperimenten moeten zien, en dat hebben we niet. Het bewijs voor deze “vijfde kracht” is echt zwak.

De vijfde kracht zou kunnen bestaan, maar die hebben we nog niet gevonden. Wat we wel weten is dat het standaardmodel niet helemaal klopt, en dat betekent dat er een aantal zeer interessante ontdekkingen wachten om ontdekt te worden.

Bron: https://www.universetoday.com/144173/a-fifth-fundamental-force-could-really-exist-but-we-havent-found-it-yet/


English (original)

A Fifth Fundamental Force Could Really Exist, But We Haven’t Found It Yet

The universe is governed by four fundamental forces: gravity, electromagnetism, and the strong and weak nuclear forces. These forces drive the motion and behavior of everything we see around us. At least that’s what we think. But over the past several years there’s been increasing evidence of a fifth fundamental force. New research hasn’t discovered this fifth force, but it does show that we still don’t fully understand these cosmic forces.

The fundamental forces are a part of the standard model of particle physics. This model describes all the various quantum particles we observe, such as electrons, protons, antimatter, and such. Quarks, neutrinos and the Higgs boson are all part of the model.

The term “force” in the model is a bit of a misnomer. In the standard model, each force is the result of a type of carrier boson. Photons are the carrier boson for electromagnetism. Gluons are the carrier bosons for the strong, and bosons known as W and Z are for the weak. Gravity isn’t technically part of the standard model, but it’s assumed that quantum gravity has a boson known as the graviton. We still don’t fully understand quantum gravity, but one idea is that gravity can be united with the standard model to produce a grand unified theory (GUT).

Every particle we’ve ever discovered is a part of the standard model. The behavior of these particles matches the model extremely accurately. We have looked for particles beyond the standard model, but so far we have never found any. The standard model is a triumph of scientific understanding. It is the pinnacle of quantum physics.

Particles and interaction bosons of the standard model. Credit: Particle Data Group

To begin with, we now know the standard model can’t combine with gravity in the way that we thought. In the standard model, the fundamental forces “unify” at higher energy levels. Electromagnetism and the weak combine into the electroweak, and the electroweak unifies with the strong to become the electronuclear force. At extremely high energies the electronuclear and gravitational forces should unify. Experiments in particle physics have shown that the unification energies don’t match up.

But we’ve started to learn it has some serious problems.

Observations of galaxies show the distribution of dark matter. Credit: X-ray: NASA/CXC/Ecole Polytechnique Federale de Lausanne, Switzerland/D.Harvey & NASA/CXC/Durham Univ/R.Massey; Optical & Lensing Map: NASA, ESA, D. Harvey (Ecole Polytechnique Federale de Lausanne, Switzerland) and R. Massey (Durham University, UK)

More problematic is the issue of dark matter. Dark matter was first proposed to explain why stars and gas on the outer edge of a galaxy move faster than predicted by gravity. Either our theory of gravity is somehow wrong, or there must be some invisible (dark) mass in galaxies. Over the past fifty years, the evidence for dark matter has gotten really strong. We’ve observed how dark matter clusters galaxies together, how it is distributed within particular galaxies, and how it behaves. We know it doesn’t interact strongly with regular matter or itself, and it makes up the majority of mass in most galaxies.

We don’t understand most of the universe. Credit: Chandra X-ray Observatory

Then there is dark energy. Detailed observations of distant galaxies show that the universe is expanding at an ever-increasing rate. There seems to be some kind of energy driving this process, and we don’t understand how. It could be that this acceleration is the result of the structure of space and time, a kind of cosmological constant that causes the universe to expand. It could be that this is driven by some new force yet to be discovered. Whatever dark energy is, it makes up more than two-thirds of the universe.

But there is no particle in the standard model that could make up dark matter. It’s possible that dark matter could be made of something such as small black holes, but astronomical data doesn’t really support that idea. Dark matter is most likely made of some yet undiscovered particle, one the standard model doesn’t predict.

All of this points to the fact that the standard model is, at best, incomplete. There are things we are fundamentally missing in the way the universe works. Lots of ideas have been proposed to fix the standard model, from supersymmetry to yet undiscovered quarks, but one idea is that there is a fifth fundamental force. This force would have its own carrier boson(s) as well as new particles beyond the ones we’ve discovered.

This fifth force would also interact with the particles we have observed in subtle ways that contradict the standard model. This brings us to a new paper claiming to have evidence of such an interaction.

The paper looks at an anomaly in the decay of helium-4 nuclei, and it builds off an earlier study of beryllium-8 decays. Beryllium-8 has an unstable nucleus that decays into two nuclei of helium-4. In 2016 the team found that the decay of beryllium-8 seems to violate the standard model slightly. When the nuclei are in an excited state, it can emit an electron-positron pair as it decays. The number of pairs observed at larger angles is higher than the standard model predicts, and is known as the Atomki anomaly.

There are lots of possible explanations for the anomaly, including experiment error, but one explanation is that it’s caused by boson the team named X17. It would be the carrier boson for a (yet unknown) fifth fundamental force, with a mass of 17 MeV. In the new paper, the team found a similar discrepancy in the decay of helium-4. The X17 particle could also explain this anomaly.

While this sounds exciting, there’s reason to be cautious. When you look at the details of the new paper, there’s a bit of odd data tweaking. Basically, the team assumes X17 is accurate and shows that the data can be made to fit with their model. Showing that a model can explain the anomalies isn’t the same as proving your model does explain the anomalies. Other explanations are possible. If X17 does exist, we should have also seen it in other particle experiments, and we haven’t. The evidence for this “fifth force” is really weak.

The fifth force could exist, but we haven’t found it yet. What we do know is that the standard model doesn’t entirely add up, and that means some very interesting discoveries are waiting to be found.

Source: New evidence supporting the existence of the hypothetic X17 particle https://arxiv.org/abs/1910.10459 , by Krasznahorkay, A. J., et al.

Source: Observation of anomalous internal pair creation in be 8: A possible indication of a light, neutral boson, https://arxiv.org/abs/1504.01527  by Krasznahorkay, A. J., et al.

From: https://www.universetoday.com/144173/a-fifth-fundamental-force-could-really-exist-but-we-havent-found-it-yet/